
Handout: Naming Organic Compounds

A. IUPAC Naming

General Rules:

- 1. Name parent+suffix: longest carbon chain + family suffix.
- 2. Number carbons in parent chain: Begin numbering from end that meets specified criteria (*See Nomenclature Chart).
- 3. Name prefix: substituent position #s and names (grouping repeated substituents together using di-, tri-, etc).
- 4. Write full name, listing substituents in alphabetical order (ignoring di-, tetra- in alphabetizing).

Name Format: #-substituent-#-substituentparentsuffix

Some Parent Alkane Names

No. of	Structure	Name
Carbons		
1	CH ₄	Methane
2	CH ₃ CH ₃	Ethane
3	CH ₃ CH ₂ CH ₃	Propane
4	CH ₃ CH ₂ CH ₂ CH ₃	Butane
5	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	Pentane
6	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Hexane
7	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Heptane
8	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Octane
9	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Nonane
10	CH ₃ CH ₂ CH ₃	Decane

Some Substituent Names

Substituent Name	Substituent Name	Specific Examples	
Group	Substituent Name	Specific Examples	
	allerd	H-	
Hydrocarbon	alkyl	H ₃ C — H ₃ C — C —	
with single		methyl ethyl	
bonds only		CH ₃ CH _o	
		CH ₃ CH ₃ CH ₃ H ₂ H ₂ C - C - C - C - C - C - C - C - C - C	
		isopropyl isobutyl	
		H ₂ C—C—C—CH ₃ H sec-butyl	
		CH₃ I	
		H₃C—Ċ—	
		ĊH₃ <i>tert-</i> butyl	
0 = 0	acyl	O = C O = C O	
R	(Ends with -oyl, except for acetyl)	H ₃ C C H ₃ C C H ₂	
	except for acceying	acetyl propanoyl	
-OR	alkoxy	acetyl propanoyl	
		methoxy ethoxy	
0 HC	formyl		
0	keto		
, c			
-ОН	hydroxy		
-NO ₂	nitro		
-NH ₂	amino		
-X (halogen)	halo	-Cl chloro -Br bromo	
		-I iodo	
	phenyl		
	l	1	

B. Common Names

Some Widely-Used Common Names

Some Widely-Used Common Names							
Compound	Common Name	IUPAC Name					
CH ₂ =CH ₂	ethylene	1-ethene					
CH ₃ CH=CH ₂	propylene	1-propene					
нс≡сн	acetylene	1-ethyne					
O H ₃ C C CH ₃	acetone	2-propanone					
O CH ₂	formaldehyde	methanal					
O 	acetaldehyde	ethanal					
O HC OH	formic acid	methanoic acid					
о н ₃ с / С он	acetic acid	ethanoic acid					
О H ₃ C—С С ОН	propionic acid	propanoic acid					
0 H ₃ C — C — C — OH	butyric acid	butanoic acid					

Nomenclature Chart for Organic Compounds (From <u>HIGHEST TO LOWEST</u> naming priority)

FAMILY	PARENT	SUFFIX	NUMBERING	NOTES	EXAMPLES
Carboxylic acid	Parent is longest carbon chain containing carboxylic acid. Derive name from parent alkane.	-oic acid (-dioic acid for dicarbox- ylic acid; -enoic acid for unsatur- ated acid)	Begin at carbonyl C.	Common names are often used (C next to COOH group is designated as "α"). [Salts: cation + name derived from parent acid, replacing –ic acid with –ate]	H ₃ C—C—OH CI 2-chloropropanoic acid or α -chloropropionic acid (common)
Ester	Name of alkyl group that replaced -H in -COOH + name derived from parent acid, replacing –ic acid with –ate	-ate	Begin at carbonyl C.	Common names are often used: name of alkyl group that replaced -H in -COOH + name derived from common name of parent acid, replacing -ic acid with -ate	H ₂ H ₂ H ₂ H ₃ C—C -C -C -O -C -CH ₃ ethyl butanoate or ethyl butyrate (common)
Amides	Derive name from parent carboxylic acid, replacing <i>-oic acid</i> with <i>-amide</i> .	-amide	Begin at carbonyl C.	Alkyl substituents on nitrogen start with "N"	O CH ₃ H ₃ C—C—N—CH ₃ N,N-dimethylacetamide
Aldehydes	Derive name from parent alkane.	-al	Begin at carbonyl C.	Common names are often used for simplest aldehydes, ending with "-aldehyde."	CH ₃ O H ₂ H ₃ C—C—C —C—H 3-methylbutanal or β-methylbutyraldehyde (common)
Ketones	Derive name from parent alkane. Parent name starts with position # of carbonyl C.	-one	Begin at end nearer to carbonyl C.	Common names are often used for simple ketones: names of two alkyl groups + "ketone."	H ₂ H ₂ H ₃ C—C —C —C—CH ₃ 2-pentanone or methyl propyl ketone (common)
Alcohol	Parent is longest carbon chain containing OH. Parent name starts with position # of the C with OH.	-ol (-diol, -triol, etc.)	Begin at end nearer to OH group.	Cyclic alcohols: Parent name begins with "cyclo" (no need to start parent name with "1"). Begin numbering at C with OH, and number to give substituents lowest numbers.	$\begin{array}{c cccc} CH_3 & OH \\ I & H_2 & I & H_2 \\ H_3C & -C & -C & -C & -C & -CH_3 \\ \hline \\ \underline{5-methyl-3-hexanol} \\ OH & \\ OH & \\ H_3C & -C & -C & -CH \\ H & \underline{1,3-butanediol} \\ \end{array}$
Thiols		-thiol		Name in same way as alcohols, except end with "-thiol."	H_3C — C^2 — SH ethanethiol

FAMILY	PARENT	SUFFIX	NUMBERING	NOTES	EXAMPLES
Amines		-amine		1° amines, and 2°, 3° amines with same R groups on N: Treat alkyl groups attached to nitrogen as substituents. For same substituents, use "di" and "tri." 2°, 3° amines with different R groups on N: Parent amine is the one with largest R group; name other groups as substituents, starting with <i>N</i> [Ions derived from amines: Replace –amine with –ammonium.]	$\begin{array}{c} H_{3}C \overset{H_{2}}{-} H_{2} & H_{2} \\ H_{3}C \overset{H_{2}}{-} C & -C & -NH_{2} \\ propylamine \\ H_{3}C \overset{H_{2}}{-} C & -N \overset{H_{2}}{-} C & -CH_{3} \\ & & & & & & & \\ H_{2}C \overset{H_{2}}{-} CH_{3} & & & \\ triethylamine \\ \\ H_{3}C \overset{H_{2}}{-} C & -C & -N \overset{H_{2}}{-} H & -CH_{3} \\ & & & & & & \\ N\text{-methylpropanamine} & & & \\ N\text{-methylpropanamine} \end{array}$
Alkenes Alkynes	Parent is longest carbon chain containing the double or triple bond. Parent name starts with position number of multiple bond. May need cis/trans designation.	-ene -yne (-diene, -triene, etc.)	Begin at end closer to multiple bond. (If multiple bonds are equidistant, give smaller number to first branch point). Then give smallest numbers possible to substituents.	Cyclic alkenes: Parent name begins with "cyclo" (no need to start parent name with "1"). Number multiple bonds 1 and 2, in direction to give first substituent the next smaller possible number.	$\begin{array}{c} H_2 \\ H_3C - C \\ C \\ C \\ CH_3 \\ \hline \\ Cis-4-methyl-3-heptene \\ \\ H_3C - C - C - C - C = C - CH_3 \\ \hline \\ 2-heptyne \\ \hline \\ CH_3 \\ \hline \\ 4-methylcyclohexene \\ \end{array}$
Alkanes	Parent is longest carbon chain.	-ane	Begin at end nearer to branch point. Then give smallest numbers possible to substituents.	Cyclic alkanes: Parent name begins with "cyclo." Give smallest number to substituent that comes first in alphabetical order. Number in direction to give second substituent the smaller possible number. (If single substituent, don't need "1")	$\begin{array}{c cccc} CH_3 & & H_2 \\ H_3C - C - C - C - C - C - CH_3 \\ & & H_2C - CH_3 \\ \hline & & H_2C - CH_3 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
Ethers	The alkoxy group –OR is treated as the substituent (Alkane or another functional group is the parent).			Common names are often used for simple ethers: two R groups + "ether." Common names are used for cyclic ether compounds.	$\begin{array}{cccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & $

Haloalkanes (or Alkyl Halides)	Halogen atom is treated as substituent (Alkane or another functional group is the		Common names are often used, in format "alkyl halide."	H ₂ C—C —Br 1-bromoethane or ethyl bromide (common)
	parent).			

Aromatic Nomenclature (*Functional group priority is same in aromatic and aliphatic nomenclature.)

FAMILY	PARENT	SUFFIX	NUMBERING	NOTES	EXAMPLES
Benzene	"benzene" or common name for substituted benzene		For di-substituted benzenes, o, m, p typically used for positions of substituents. o- m- p-	Common names for substituted benzenes are often used (accepted by IUPAC): Toluene Phenol Phenol Benzaldehyde Benzoic acid Aniline	NO ₂ Cl m-chloronitrobenzene O ₂ N p-nitrophenol